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Abstract

A new method is proposed to identify the joint structural parametersof complex systems using a frequency response
function (FRF)-based substructuring method and an optimization technique. The FRF method is used to estimate the
joint parameters indirectly by minimizing the difference between the reference and calculated responses using a gradi­
ent-based optimization technique with analytical gradient information. To assess the robustness of the identification
method with respect to noisy input data, FRFs contaminated by uniformly distributed random noise were tested in a
numerical example. The effects of the random noise and the magnitude of the connection stiffness values on the accu­
racy of the method were investigatedwhile identifying the joint parameters. When the FRFs were contaminated with
random noise, the proposed procedure performed well when used to identify the stiffness values, but the accuracy of
identification is deteriorative when used to identify the damping coefficients. The joint parameters of a real bolted
structure were also identified by the proposed method. The resultsshow that it can be applied successfully to real struc­
tures, and that a hybrid approach using both calculated and measured FRFs in the substructure model can enhance the
quality of the identificationresults.

Keywords: Joint parameteridentification, Sensitivity analysis,FRF-basedsubstructuring method,Boltedstructure

1. Introduction

In structural vibration problems, numerical tech­
niques such as finite element (FE) analysis have be­
come common tools owing to recent advances in
methods and the ease of access to commercial soft­
ware. However, for complex structures, it is still very
difficult to predict the responses of dynamic systems
using numerical methods because of uncertainties that
arise from the material properties, geometry, applied
loads, and boundary conditions, including joint char­
acteristics. Among these, the characteristics of me­
chanical joints have large effects on system responses.
However, it is generaJly difficult to determine the
exact dynamic characteristics of joints. In particular,
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complex systems consist of many subsystems and
various mechanical joints such as bolts, rivets, and
bushes that are interconnected. For these cases, engi­
neers make equivalent models of the joints that con­
sist of springs, masses, and dampers. Therefore, the
identification of joint parameters such as the stiffness
of the springs and the damping coefficients of the
dampers is one of the most important components
required to develop a useful model of complex sys­
tems by using numerical methods.

Many researchers have proposed identification
methods for joint parameters. The first category of
these studies involves updating the FE models di­
rectly to reproduce experimental modal analysis re­
sults [1-6]. These methods combine FE models with
experimental models to estimate the actual joint pa­
rameters, or the mass and stiffness matrices. The mass
and stiffness matrices are necessary to create updating
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schemes. However, these schemes are very expensive

to obtain for complex systems. Moreover, because the
experimental models are deduced from a curve-fitting
process, one cannot avoid approximation errors.

Meanwhile, other researchers have developed a
second category of joint identification methods that
are based on experimental data These can be classi­
fied as either modal-based methods (4-6] or
frequency response fimction (FRF)-based methods [7­
18]. Modal-based methods use modal parameters
such as eigenvectors and natural frequencies to esti­
mate the joint parameters, while FRF-based methods
estimate the joint parameters directly from frequency
response functions. Recently, the FRF-based method
has gained in popularity because the experimental
modal model is expensive to use and has relatively
low accuracy compared to the FRFs themselves. In
FRF-based methods, the joints are modeled with stiff­
ness elements and dashpots, and the parameters are
identified from the FRFs of the overall system and
substructures by letting the parameters agree with the
measured system responses. Tsai and Chou [7] pro­
posed an identification formulation that was based on
the receptance method to calculate the properties of a
single bolt joint directly from the measured FRFs of
structures. Wang and Liou [8, 9] and Ren and Beards
(12] suggested joint parameter identification methods
that can avoid noise problems from contaminated
FRFs by using the FRFs of whole structures and sub­
structures or linear transformation matrices and
weighting functions. Ratcliffe and Lieven [13] gener­
alized Ren and Beards's formulation. Ren and Beards
(15] also treated a joint identification problem in
which the joint parameters' values had large differ­
ences in magnitude. Wang and Chuang (18] extended
their work to the non-Gaussian noise problem and
joints with parameter values that had differences
measured in orders of magnitude. Hong and Lee [10]
developed a joint parameter identification method that
combines the use of measured incomplete FRFs and
FRFs computed from a finite element modeL Yang
and Park [11] proposed an iterative method to identify
the joint parameters of a structure from a subset ofthe
FRFs of substructures. Hwang [14] derived a joint
parameter expression by comparing FRFs with and
without connections. Also, Yang et at. [17] identified
both translational and rotational stiffuess values using
a substructure synthesis method and frequency re­

sponse functions.
The FRF-based methods described above are direct

methods that calculate the joint parameters immedi­

ately from the equations obtained by manipulating the
FRF matrices. The matrix expressions require some
inverse operations. As a result, FRF-based direct

methods are inherently sensitive to noise contained in
the FRFs. Therefore, an indirect method may improve
the results. Furthermore, the author and his colleague
(19, 20] have developed a design sensitivity formula­

tion using the frame of an FRF-based method and
applied it to an engine mount design optimization
problem. Reversing the viewpoint of the problem
formulation, in this paper we propose a new method

that utilizes FRFs and an optimization technique to
identify joint parameters. This will maintain the ad­
vantages of the FRF-based method but use an indirect
method to overcome the noise problems. The pro­
posed method is robust to random noise because

noise effects are reduced through the indirect
formulation, In addition, the proposed formulation

uses a multi-domain FRF-based substructuring (FBS)
technique that does not limit the number of connec­
tions and substructures to be identified, whereas many
methods are confined to two substructures. The FRF­
based substructuring method is based on the system
response obtained by using the FRFs of the substruc­
tures. Therefore, experimental and calculated FRFs
can be easily combined. Moreover, the introduced

optimization technique enhances our flexibility in
identifying the joint parameters. For example, both
the average and best approximated values of a pa­
rameter for several joints can easily be estimated, or
frequency-dependent parameters can be estimated by

adding constraints to the optimization problem.
In this paper, joint structural parameters of a real

bolted structure are identified by using an FRF-based
substructuring method and a gradient-based optimiza­
tion technique. Before the identification of real­
structure parameters, numerical experiments are used
to explore the accuracy of the identification procedure
with respect to random noise contained in the FRFs
and the relative magnitude ofthe joint stiffness values.

Finally, the identification method is applied to a real
structure.

2. Identification of joint parameters

As stated in reference [12], the basic idea adopted
in almost every FRF-based joint identification method

is similar: the joint parameters are determined by
minimizing the difference between the measured
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where Ski is a matrix expression of the compliance
coefficients at the interfacial boundary,

(2)

(3)

(5)

i,k =: l'-",n,

H·R=F

R;k + R~ =0, i.k =: I,' .. .n,

X<, =: f Hi~ .Rr «u;.r, i =1,"',n, i;<o k (1)
)"I.j~k

If a spring and a viscous damper can be used to
represent the characteristics of a connection between
substructures, the compatibility equations at the inter­
facial boundary must be satisfied as follows:

where Hi~ is the frequency response function matrix
between the interfacial points i and j on the k-th sub­
structure, Rj

k is a reaction force vector at the
connections acting on the k-th substructure owing to
the j-th substructure, and H;~ is the frequency re­
sponse function of the i-til interfacial point of the k-th
substructure when the external force, r .is replaced
by a unit force. The reaction forces between two sub­
structures satisfy the force equilibrium equation by
Newton's third law as follows:

where H is a full matrix in which the FRFs be­
tween interfacial points and the joint parameters are
assembled according to the connection relations of
the substructures, F is a known vector related to the
external forces, and

Here, l1J is the angular velocity, and Kki and
Cki are the stiffness and the damping coefficients,
respectively, of the connecting elements between the
k-th and z-thsubstructures. Only the diagonal terms of
Sli are not zero, and Kki =K ik , Cki =: Cik . It should
be noted that the stiffness and damping coefficients
are not known in the joint parameter identification
problem. Thus, an initial assumption for the values is
necessary to form the matrix Ski given in Eq. (4).

Substituting Eqs. (1) and (2) into Eq, (3) and
assembling the resulting matrix with respect to the
unknown reaction forces, we obtain a new algebraic
equation as follows:

reference response from tests and the calculated re­
sponse, which is a function of the joint parameters.
The problem is how to find a solution that makes the
difference zero. Many researchers extract the joint
parameter expressions to be identified using a least­
square error minimization approach. However, be­
cause the FRFs inevitably contain noise in real situa­
tions, one cannot generally find such an exact solution.
The best solution must be used instead. Here, we
adopt an iterative optimization technique to fmd the
best solution for the joint parameters. The FRF-based
substructuring method gives the system response that
is to be calculated and compared with the reference
response. To enhance the efficiency of the iterations
during optimization, an analytic sensitivity formula is
proposed and used in the identification procedure.

2.1 FRF-basedsubstructuring method

The structural dynamic system shown in Fig. 1 has
n substructures that are connected to each other by
mechanical joints. A spring and damper represent
each joint, and mass effects are neglected in this study.
The reference response is measured at point r,
which is located in an arbitrary k-th substructure. The
external forces / (i = 1,.. ·,n) acting on the substruc­
tures are assumed to be known.

The responses at the connecting points must be de­
termined to calculate the reference response by using
the FRF-based substructuring method. Assuming that
the kinetic energy is transmitted only through the
connections between the substructures, the response
of the z-th connecting points, Xi

k, on the k-th sub­
structure can be written using the superposition prin­
ciple as

Fig. I. A substructural system.
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(8)

Thus, one can obtain all reaction forces at the con­
nections by multiplying both sides of Eq. (5) by the
inverse of H .

For the response side, since all reaction forces at
the joints are known from Eq. (5), the superposition
principle gives the target response expression at point
r in the k-th substructure, x~, as follows:

where H~ and Hr~ are the frequency response
functions of the response point when a unit force is
exerted on the interfacial boundary points of the k-th
substructure and when the external force, f"; is re­
placed by a unit force, respectively. This is a brief
summary of the FBS method. One could, though,
obtain the FRFs through experiments such as impact
tests, or through numerical calculations using FE
models for each substructure. Three classes of FRFs
are necessary to apply the FRF-based substructuring
method to complex structures: those from excitation
to connection points in the external-force acting sub­
structures (Hi~ ), those between connection points in
each substructure (Hi~ ), and those between connec­
tion and response points in the response-point-placed
substructures (H~). The FRFs between connection
points, Hi~' are assembled according to the connec­
tion layout of the structure in the system matrix of Eq.
(5), and the assembled matrices are inversed to obtain
the reaction forces at the connection points. Usually,
the singular value decomposition method is used to
minimize the error effects when a matrix is inversed.

The partial derivative of x~. ax;lob, is an im­
plicit function of the structural parameters. To obtain
the partial derivative efficiently, we have developed a
sensitivity analysis method using the framework of
the FBS method and demonstrated its usefulness [20].
The sensitivity analysis formulation in reference [20)
is briefly explained here for completeness. The
method utilizes a direct differentiation method to
calculate the unknown term, ax~ /ab . Assuming that
the derivative exists, the differentiation of Eq, (7)
results in the following equation:

where X ref is a known response of a dynamic struc­
tural system and x~ is a response calculated at the
same point by the FBS method with joint parameters
b. Because all substructures remain unchanged dur­
ing the joint parameter identification procedure, the
response in Eq. (8) is only a function of the joint pa­
rameters. Therefore, by minimizing the identification
index of Eq. (8) within a design space of b , one can
estimate the joint parameters of a dynamic system.

Many mathematical programming algorithms are
available to minimize the identification index. Among
them, the gradient-based algorithm is the most effi­
cient from an engineering viewpoint, even though it
may yield a local minimum. The first gradient of the
identification index with respect to the parameters is
required to use the algorithm. This can be written
from Eq. (8) as

(9)
d'¥ o'¥ axk

-=:-_._'
db ax~ 8b

(7)x; =: :t H~. s; +H~ .r
h:l.i#.k

Multiplying both sides of Eq. (11) by the inverse

Here, it should be noted that the external forces and
the FRFs of the substructures are not changed because
only the joint parameters vary during the identifica­
tion procedure. To obtain the partial derivative,
oRiklob, in Eq, (IO) explicitly, Eq. (5) is differenti­
ated with respect to the parameters:

2.2 The jointparameter identification procedure

To identity the joint parameters, the idea of this
work is that if we have the correct parameter values,
the response computed by the FBS method will ex­
actly coincide with the measured overall system level
reference response. Thus, one can identify the correct
parameters by minimizing/the response differences
between the reference and computed values using a
numerical searching algorithm. To identify the joint
parameters of a dynamic structure with a mathemati­
cal programming scheme, we require an identification
index that is an objective function that becomes zero
for the correct parameters and has a form such as

sn oR
-·R+H·-=O
jjb ab

(10)

(11)
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matrix of H and rearranging the terms, we obtain I Definethe IndexFunction

i Add Suitable Constraiilts

The partial derivative of the system matrix H in
Eq, (12) can be obtained analytically from Eq, (4). It

. is noted that the derivative of the non-diagonal ele­
ments become zero. Therefore, one can compute the
gradient information from Eqs. (9), (10), and (12).
The most expensive calculation required to obtain the
gradient information is the computation of the inverse
matrix, B-1

• However, the inverse matrix is already
known because the FRF-based substructuring frame­
work is used for the response calculations.

By obtaining the gradient information of the identi­
fication index function, one can estimate the struc­
tural joint parameters numerically, starting from an
initial parameter set, by plugging the gradient infor­
mation into a gradient-based optimization algorithm.
The joint' parameters must be initialized from arbi­
trary values. Then the optimization algorithm yields a
solution based on the mathematical programming
method using the gradient information, However, this
solution may be a local minimum. One must judge
whether the solution is acceptable by comparing the
reference response with the calculated response and
considering the locations of the peaks and the levels
of the frequency response functions. If the solution is
not acceptable, different initialization values must be
selected and the procedure must be repeated until
acceptable joint parameters are obtained. One can
overcome the local solution problem by introducing
an interactive identification procedure, and generally
several starting points are sufficient to identify the
structural parameters [211- This is an iterative proce­
dure, which is summarized in Fig. 2.

Many types of functions can be used for the identi­
fication index. When selecting the identification index
function, one should consider that gradient-based
minimization algorithms give local rather than global
minimum points. Therefore, for the identification
index, it is important to select a monotonically de­
creasing function that is as wide as possible over the

oR =_H-1.[OH .R]
8b 8b

where

oR _{J~ JR~ oR;, JRi-- -- -- ... - -- ...
8b 8b ob 8b 8b

8P"-2 3Rn-2 8Rn- 1}T_'_"'-_1 _" n_

8b 8b 8b

(12)

(13)

VCalculateor Measurethe Substructure FRFs
f Measurea ReferenceResponse

i Assume anInitial JointParameter Vector

Fig. 2. The joint parameter identification procedure.

parameter range. The authors have explored and
tested different types of identification index functions
in reference [21]. From a numerical study, we con­
cluded that the square of the magnitude difference
between the reference and computed FRFs on a deci­
bel scale gave the most stable identification results.

The proposed method is not restricted to simple
two-substructure systems, because a multi-substruc­
ture domain is assumed in the formulation, Further­
more, one can easily expand the formulation to fre­
quency-dependent joint parameter problems. The
formulation requires only one system level reference
response. These advantages enhance the applicability
of the proposed formulation.

3. Numerical example and discussion

To demonstrate the usefulness ofthe proposed joint
parameter identification method, the authors explored
the accuracy of the method using the numerical ex­
ample illustrated in Fig. 3. The ladder structure shown
in the figure has four rectangular steel beams that are
connected to each other by elastic springs and viscous
dampers. The goal oftbis problem was to identify the
spring stiffness values and damping coefficients.

In order to identify the structural parameters, an
identification index was defined as
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variation. Biased noises are deeply related with im­
proper experimental set-up and techniques, which are
beyond our concern in this paper. Thus, the influence
of random noise on the identification accuracy of the
proposed method was investigated here. To simulate
the unbiased noise effects, uniformly distributed ran­
dom noise with a zero mean value was added to the
exact FRFs and the identification procedure was per­
formed by using the contaminated FRFs. The noise
added to each FRF can be represented as follows:

(14)

Fig. 3. A ladder structure.

wheref and Ill/ are the frequency and the magnitude
of the vector, respectively. The identification index
was the squared area formed between the reference
and calculated responses along frequency axis. The
index function contained an integration process that
smoothed the integrand to stabilize noisy responses.
This is a very desirable characteristic because the
responses could be contaminated by unavoidable
noise in experiments. Furthermore, the square opera­
tion of the integrand acts as a weighting factor along
the frequency axis.

For the FBS method response calculations, the lad­
der structure was decomposed into four substructures
and FE models for the substructures were developed
by using ten and fourteen beam elements for the ver­
tical and horizontal substructures, respectively. The
frequency response functions of each substructure
required in Eq. (7) were calculated from the FE mod­
els using MSCINASTRAN [22]. In this study, the
FRFs calculated from FE models were regarded as
exact and uncontaminated. An FE model of the entire
ladder structure with specified joint parameters was
used to calculate the frequency response at the re­
sponse point shown in Fig. 3; this computed response
was used as the reference response for the problem.

The identification procedure described in Section 2
requires correct FRFs to calculate the correct response
of a dynamic system. However, measured FRFs con­
tain noise from various sources, which is inevitable in
experiments. Experimental noise contained in FRFs
consists of biased noise and unbiased one. Unbiased
random noise comes from uncontrollable system

3.1 Effects ofrandom noise in the FRFs
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where h is an FRF and e is the random noise,
which was uniformly distributed in [-a,+a]. The
magnitude of interval a indicates the maximum
noise level contained in the FRFs. The random noise
was generated by the rand function found in
MATLAB software [23].

The accuracy of the identification procedure was
tested for the following four cases.

Casel: FRFs in H (all Hif) were contaminated.
Case II: FRFs between the external force and con­

nection points ( Hj~ ) were contaminated,
Case III: FRFs between the connection and re­

sponse points ( H~ ) were contaminated.
Case IV:All FRFs were contaminated.
Noise levels of 0, lO, and 20% were imposed on

the FRFs of each substructure. Tables 1 - 4 show the
identification results. For each case, the correct stiff­
ness and damping coefficient values were 1.0 x 108

N/m and 1.0 x 103 Ns/m, respectively. As all cases
produced similar results, Fig. 4 shows the initial and
identified responses for case IV only. The identifica­
tion procedure reconstructed the reference response
well despite the relatively large noise levels. The
stiffness values were in reasonable agreement with
the expected values, considering the noise levels.
However, the identification results for the damping
coefficients contained large errors relative to the noise
level.This was because the magnitude of the damping
has a large influence on the magnitude of the re­
sponse at the resonance point for cases with low
damping. Accordingly, a small contamination of the
response near the resonance point results in large
errors in the identification of the damping coefficients.
However, the random noise imposed in the numerical
study was a very severe case., especially near the
resonance points. In real situations, the noise level
around the peaks is lower in general. By examining
the identification results of Tables 1 - 4, one can also

Table I. Identification results with contaminated H matrix
(Case 1).

Noise Level (%) 0% 10% 20%

KI 1.000 0.992 1.005

Stiffness K2 1.000 0.989 1.012
(xE8N/m) K3 1.000 1.004 0.989

K4 1.000 1.000 1.013

CI 1.000 1.785 1.351
DampingCoef-

C2 1.000 1.846 2.758
ficient

( xE3 Nsec/m) C3 1.000 0.750 1.311

C4 1.000 1.081 1.743

see that as the random noise in the FRFs of H dete­
riorated,the identification results became worse. As
anticipated in Eq. (5), a small amount ofnoise in H
can be amplified during the inverse operation of the
matrix for the internal force computations, even
though a singular value decomposition technique is
used to solve the linear algebraic equations. Further­
more, from Tables 1-4, the noise included in the FRFs
between external force and connection points had
more negative effects on the identification results than
the noise contained in the FRFs between connection
and response points. In summary, one can conclude
that when there was random noise in the FRFs, the

Table 2. Identification results with contaminated FRFs be­
tween external force point and connection points (Case II).

Noise Level (%) 0% 10% 20%

KI 1.000 0.996 0.994

Stiffuess K2 1.000 1.001 0.997

(xE8N/m) K3 1.000 1.005 1.005

K4 1.000 0.999 0.995

CI 1.000 1.224 1625
Damping C2 1.000 1.079 1.190

Coefficient
1.000 0.818 0.673

(xE3 Nsec/m) C3

C4 1.000 0.950 0.871

Table 3. Identification results with contaminated FRFs be­
tween connection points and response point (Case Ill).

Noise Level (%) 0% 10% 20%

KI 1.000 0.993 1.006

Stiffness K2 1.000 0.991 1.004

(xE8N/m) K3 1.000 l.002 0.999

K4 1.000 1.000 1.000

Cl 1.000 1.314 1.149
Damping

C2 1.000 1.155 1.234
Coefficient

1.000 0.803 1.041
( xE3 N.see/m) C3

C4 1.000 0.962 0.961

Table 4. Identification results with all contaminated FRFs
(Case IV).

NoiseLevel (%) 0% 10"10 20%

Kl 1.000 0.978 1.012

Stiffness K2 1.000 0.995 0.998
(xES N/m) K3 1.000 1.027 1.005

K4 1.000 0.993 1.009

CI l.000 2.481 2.573
Damping C2 l.000 2.122 2.783

Coefficient
1.000

( xE3 Nsec/m) C3 0.126 0.975

C4 1.000 0.948 1.224
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4. Application to a real structure

To verify the proposed identification method for
joint structural parameters experimentally, we intro­
duced the bolted structure shown in Fig. 7. The struc­
ture was composed of a steel jig fixed on a test bed
and an aluminum plate. Four steel bolts and nuts con­
nected the jig and the plate. The diameter and nomi­
nal length of the bolts were 8 and 37 mm, respec­
tively. The object of this example was to identify the
structural parameters ofthe bolts.

identification procedure tor the stiffness values was
robust while the identification procedure for the

damping coefficients was relatively weak.

3.2 Effects ofthe stiffness magnitude

If the magnitude of the joint stiffness is very large,

the joint becomes an almost rigid connection. In this

case, the influence of the joint parameters on the re­

sponse may be indistinguishable because the compli­
ance terms of Eq. (4) approach zero. These are added

to the diagonal elements of the system matrix, which
must be inversed to calculate the responses and sensi­

tivity information. In this section, the effects of the
stiffness magnitude on the identification results are

investigated through numerical experiments.
First, the reference responses of the ladder-like

structure described in the previous section were calcu­
lated by using the FE model of the overall structure.

The joint stiffness values were increased from 1.0 x

10& to LO X lOll N/m, while the damping coefficients

were fixed at 1.0 x 103 Ns/m to estimate the response

variation with respect to the joint stiffness. Fig. 5

shows the calculated reference responses. Changes in
the joint stiffness above a certain value, here ap­

proximately 1.0 x 1010 N/m, did not affect the refer­
ence response. Therefore, we can anticipate that be­

yond a certain threshold the identification problem
does not have a unique solution because of the insen­

sitivity of the reference response with respect to the
joint parameters. Thus, the proposed procedure will

yield an arbitrary solution among many possible solu­
tions. To verify this point, the identification procedure

was applied to one response shown in Fig. 5, which
was selected as a reference response. The procedure

was then repeated for the other responses. The identi­

fication results are plotted in Fig. 6. As expected, the
identification results became worse for joint stiffness

values above the threshold of 1.0 x 1010 N/m because

the reference response was numerically the same for
the entire region. Therefore, a prerequisite of the pro­

posed method is that the reference response must be
sufficiently sensitive to the joint parameters. However,

If the only concern is to reproduce the reference re­

sponse, it does not matter which joint parameter is
used in this situation. In order to overcome the satura­

tion problem successfully, one can expand the band­

width of the index function and use stiffer substruc­
tures so that the index function becomes sufficiently

sensitive with respect to the joint parameters.
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Fig. 8. Experimental and calculated FRFs of the aluminum
plate.
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an FBS model of the real structure is developed. In
the FBS model, the transmissions of moments
through the joints are assumed to be negligible, so
that rotational FRFs are not used in the FBS model.

With the proposed method, the structural parame­
ters of the bolts were identified by using the measured
FRFs of each substructure.The identification index of
Eq. (14) was used. The lower and upper limit fre­
quencies were 2 to 1000 Hz, respectively. Here, we
assumed that the joint parameters of each bolt were
the same, as the bolts had the same appearance and
specifications. Adding equality constraints to the op­
timization formulation enforced this assumption. Ine­
quality constraints were also imposed to limit the
lower and upper bounds of the joint parameters. To
solve the minimization problem, the constr MAT­
LAB function [23], which uses a quasi-Newton
method, was employed. For comparison of identified
results, a one-degree-of-freedom system with a
known mass was introduced. Table 5 shows the iden­
tification results and a reference value identified from
a vibration test of the one-degree-of-freedom system.
It should be noted that there are many uncertainties in
the "exact" values of joint parameters obtained from
experiments if the experiments are not performed in
situ. For example, the one-degree-of-freedom vibra­
tion test cannot include the effects of the fastening
torque, nuts and washers, etc. Fig. 9 compares the
reference response with the regenerated response
from the proposed method. The identification results
for the stiffness only are listed in Table 5 because the
damping coefficients were always at the lower bound
of the optimization problem, which was nearly zero.
The identified stiffuess value of the bolts was only
36% of the reference value. 10 addition, as shown in
Fig. 9, the identifiedresponses looked similar overall,
but the first peak was not reproduced and several

(a) Test set-up

(b) A connecting bolt and nut

Fig. 7. A bolted plate problem,

To construct the FBS model, the structure was di­
vided into two substructures. The first substructure
consisted of the test bed and the jig, and the second
substructure consisted of the aluminum plate. The jig
substructure was fixed on the test bed and had an
excitation point and four irregularly distributed 10­
mm diameter holes. The 205 x 450 x 10-mm plate
substructure also had four IO-mm diameter holes and
a reference response point, as shown in Fig. 7. The
reference response and the FRFs of each substructure
were measured for the FBS model from impact ham­
mer tests using a small accelerometer. Scadas III
front-end and Cada-X [24] software were used to
acquire and transform the signal. Only one direction
perpendicular to the plate was excited and measured
in the experiment. The frequency band was 1000 Hz
with I-Hz increments. Fig, 8 shows a measured FRF
for the plate substructure. With the measured FRFs,
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Fig. 10.An FE model for the aluminumplate.

Fig. 9. Reference and identified responses of the bolted plate
problem.

Table 6. Comparison of eigenfrequencies for the aluminum
plate with free-free boundary condition.
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Fig. II. Variations of a measuredFRF in the aluminum plate
substructure.

calculated and experimental FRFs are compared in
Fig. 8, and the natural frequencies are listed in Table
6. The good agreement between the two models is
readily visible. The joint parameters were identified
again by using the calculated FRFs for the plate prob­
lem and the experimental FRFs for the other substruc­
ture. These are also listed in Table 5. Fig. 9 shows the
reproduced response from using the identified results.
The response from the hybrid FBS model represented
the reference response better than the response from
the experimental FBS model. In particular, the results
ofthe hybrid model indicated a peak at around 70 Hz,
although the level of the response was shifted,
whereas the experimental model did not. This was an
unexpected result because the difference between the
FRF levels of the calculated and measured FRFs was
very small around 70 Hz. It should be noted here that
around peaks the system matrix H in Eq. (5) be-

Identified

Method Stiffness Remarks(X(Product)
E8N1m)

Experimental FBS 0.46 AllFRFsfromex-
Model periments

HybridPBS Model 1.31 FRFsof platefroman
FE model

Identified froma one-
Reference Value 1.27 degree-of-freedom

vibration test

artificial peaks were generated around 250 and 700
Hz. Besides approximation errors in the FBS model
such as the effects of ignored translational or rota­
tional degrees-of-freedom, the disagreement in re­
sponse may be owing to both biased and unbiased
noises included in the FRFs. However, as numerically
investigated in the previous section, unbiased random
noise does not cause large error in stiffness identifica­
tion results. Therefore, biased noises in experiments
may lead to the deterioration of the identification
results. For example, the connection points of sub­
structures are not a point but a circle with finite di­
mension, so that experimental FRFs of substructure
are acquired by averaging several FRFs which are
obtained by impacting different locations around the
circular connection point. These processes can cause
inconsistency in FRF data set of a substructure.

An FE model of the aluminum plate was developed
to examine the influence of the noise contained in the
experimental FRFs on the identification accuracy.
FRFs calculated from the FE model of the plate sub­
structure were used to identify the joint parameters for
the bolted plate problem. The FE model used four­
node rectangular plate elements, as shown in Fig. 10.
[t was correlated to the experimental results in terms
of the total mass, natural frequencies, and FRFs of the
aluminum plate with free-free boundary conditions by
updating the elasticity modulus of the aluminum. The

Table 5. Identificationresults of the bolted plate problem.
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comes a small value. In this situation, magnitudes of

each FRF arevery important both in absolute sense
and in relative one. As one can assume that the calcu­
lated FRFs obtained from the FE model can keep
consistency in a relative sense, the small amount of
biased noise contained in the experimental FRFs
could have been responsible for the large difference
in the response of the FBS formulation through the
inversion of the system matrix. Actually, the experi­

mental FRFs show small variation which is not con­
trollable. As an example, Fig. 11 shows the test varia­
tions of the measured FRFs for the aluminum plate.
Each FRF in Fig. 11 was obtained from consecutive
experiments and averaged five times by using the
same test setup. Therefore, in viewpoint of data set
consistency, FRFs of a substructure from a correlated
FE model are more desirable than from experiments.
Thus, hybrid approach in joint parameter identifica­
tion would be a better solution in almost real struc­
tures.

5. Conclusions

Joint parameters, such as stiffness and damping co­
efficient values, can be identified through an optimi­
zation algorithm. Here, a joint parameter identifica­
tion procedure using an FRF-based substructuring
method and a gradient-based minimization algoritlun
was proposed. Uniformly distributed random noise
was generated and added to the FRFs to test the ro­
bustness of the identification procedure. Furthermore,
the effects of the relative magnitude of joint stiffuess
on the identification accuracy were explored over a
wide range of values.

Numerical experiments showed that when the FRFs
were contaminated with noise, the proposed proce­
dure performed well when identifying the joint stiff­
ness values, but it did not perform well when identify­
ing the damping coefficients. Parameter studies of the
relative magnitude of the joint stiffness values
showed that the identification procedure yielded an
arbitrary solution if the index function was not suffi­
ciently sensitive to the joint stiffness values. This was
because the reference response was saturated for very
high joint stiffness values so that the inverse problem
did not have a unique solution.

The proposed identification method was applied to
a real problem, in which the structural parameters of
bolts used to connect plates were identified. The iden­

tification results show that the proposed method can

be applied successfully to real structures. In addition,

it is desirable to use the FRFs calculated from an FE
model of the substructures because of the consistency
ofthe FRF set
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